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Abstract —This paper presents 4 macroscopic mechanical theory for ceramic-like materials under-
going isothermal deformations. The proposed model describes an elastic brittle material which is
damageable only under tensile loading. The damage lowers the elastic stifTness in traction simulating
hence the softening and the fracture (zero stiffness) of the material. The basic idea is to consider
the continuum as & mixture of two phases —a linear elastic phase and a masonry phase (which
shows a linear elastic behavior under compression but cannot hold tractive loads at all). The damage
is then related to the volume fraction fi of the clastic constituent. The constitutive relations are
derived from macroscopic thermodynamics with the volume fraction ff and its gradient Vff taken
as state variables.

I, INTRODUCTION

Ceramics are becoming very important as structural materials (Larsen, 1985; Devezas,
1984). They present some very interesting mechanical features such as high stiffness and
predominantly clastic behavior. Nowadays, the field of applications for structural ceramics
ranges from heat engine components to bearings and special scissors, for instance.

Onc of the limitations presented by these materials is the relatively low strength
observed when they are subjected to tractive efforts (about one tenth of the strength under
compressive loads).

In most ceramics we can verify a distribution of microcracks in an essentially elastic
matrix. If the material were free of microcruacks, it would behave as a linearly elastic material,
On the other hand, a completely cracked elastic material becomes unable to equilibrate
tensile loading but can continue to behave as an elastic material under compressive loadings
(due to the mutual contact between the surfaces of the cracks).

In this paper, we study a mechanical model for elastic materials in which a distribution
of microcracks is nucleated and grown, under high tractive solicitations, up to a macroscopic
rupture. For the siake of simplicity we do not consider the degenerative behavior under
compressive loadings, The main features of the proposed model are sketched in Fig. 1.

Many different macroscopic theories have been proposed to describe such kinds of
brittle macrials. Among othcrs, we can refer to the studies developed by Bazant and
Pijuudicr Cabot (1988), Bui ¢r al. (1981), Florez (1989), Lemaitre and Chaboche
(1985), Marigo (1981, 1985), Quoc Son (1984) and Simo and Ju (1987). In this paper we
consider the continuum as a mixture of two phases—an elastic E-phase and a masonry
M-phasc. The macroscopic softening behavior is related to the volume fraction of the
constituents. For compressive loadings the material has a lincar elastic response since the
two phases have the same behavior under compression. For the tractive solicitations, up to
a limiting value of the elastic strain energy, the material behaves as a linear elastic one.
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Fig. I. Mechanical behavior described by the present model.

When this limit is reached, the volume fraction of the masonry constituent increases
continuously up to the value one (and. consequently, the volume fraction of the elastic
constituent decreases up to the value zero). when we assume that the material is locally
“broken”. Under this circumstance, the material cannot hold tractive loads at all. A study
on the masonry-like materials can be found in Giaquinta and Giusti (1985).

For tractive solicitations. the mechanical behavior verified in this model is similar to
the Continuum Damage Models presented in Bazant and Pijaudier Cabot (1988), Bui
et al. (1981), Florez (1989). Fremond et al. (1990). Lemuitre and Chaboche (1985).
Marigo (1981, 1985), Quoc Son (1984) and Simo and Ju (1987), and the volume fraction
of the masonry phase can be related to the dumage state variable adopted in these works.
The difference resides in the fact that, in the present model the deterioration of the material
due to tensile loading does not affect the stiffness under compressive toads. This behavior
can be justified if we assume that, under compressive loads, the surfuces of the microcracks
come into contact and can thus equilibrate the efforts from the neighboring material points.
Further, a remarkable characteristic of the proposed model is given by the consideration
of the gradient of the damage variable as a state variable, which is very important in order
to have a mathematically correct description of the strain softening phenomenon,

The presentation of this paper can be outlined as follows : in Section 2, the dynamics
of the medium are described by a generalization of the Principle of Virtual Power where
both the strain £ and the volume fraction of the clastic phase are taken as “kinematical™
variables. We consider that the material under consideration is a mixture of two other
materials: an clastic one and a masonry one. Each of these materials is supposed to be a
“phase” of the ceramic material. We define the volume fraction of the clastic phase as /i,
while the volume fraction of the masonry phase is denoted by (I — f§). In Section 3 we take
into account the terms of the volumetric free energy W which are responsible for the
equilibrium between these two phases, as well as a volumetric pseudo potential of dissipution
® which governs the evolution of . The deterioration of the material under tractive
solicitations is associated with the phase transformation from the elastic material to the
masonry one. In Section 4, the model is shown to be in agreement with the Second Law of
Thermodynamics.

2. THE CERAMIC MATERIAL AS A MIXTURE OF TWO PHASES

2.1, The hypothesis of two phases: the kinematical variables and the Principle of Virtual
Power

In the present study we will model the ceramic material as a mixture of two phases:
the elustic E-phasc and the masonry M-phase. A model for masonry-like materials, which
cannot equilibrate tensile loading but behave clastically under compressible loadings. was
studied by Giaquinta and Giusti (1985). in the context of planc stresses. The behavior of
both phases is illustrated in Fig. 2.

For each matcrial point, we can define a volume fraction f§;; = f§ of the E-phasc and a
volume function fiyy = (1 —f) of the M-phase. The process of nucleation and growth of
microcracks can be macroscopically characterized by the phase transformation from the
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Fig. 2. Mechanical behavior of clastic and masonry materials.

E-phase to the M-phase. For each phase. the strain is a state variable. We shall assume that
at each material point, the strains g and g, are the same, which we shall denote e.
Furthermore. the proportion of each phase in the material, characterized by the parameter
fi. is also considered to be a state variable.

If both state variables £ and f§ are supposed to be kinematical variables [following the
idcas presented by Frémond (1987) and Truong Dinh Tien (1990) in the context of
adhesion], then a First Gradient approach for the Principle of Virtual Power gives:

—J6°VV+J f°v+J b'v=‘[;)ﬁ-v VveV, )
n o, u 0

_[(I"y+ll'Vv)—f .(1*/~f/>'=0 Vyel. 2)
3 A Q

where Q is the region occupied by the body, v:Q — R'is an element of the set ¥ of the
virtual variations on the displacement ficlds u: Q - R', £:0Q, — R’ represents the contact
forces on the boundary 0Q, of Q, b:Q — R'is a distance force, and y:Q — R is an element
of the set [ of the virtual variations on the phase parameter ff: Q — R. The fields F: Q —
R and H:Q — R' arc the zeroth and the first order internal thermodynamical forces
respectively associated with the ficlds #:Q — R and Vf:Q = R, while g:0Q - R and
1:Q — R are the external thermodynamical forces associated with f respectively applied on
the surface ¢Q and on the domain Q. In the present work we do not consider the inertial
effects associated with the parameter f3.

From (1) and (2) we can obtain the following locul equilibrium equations and boundary
conditions

dive+b =pii, 6 =0" VYxeQ, (3)
ean=1{ VxedQ,. 4)
—~F+divH+/=0 VxeQ, (5)
g=H-n ¥xedQ, (6)

where n(x), x €€, is the unitary outward normal to the boundary ¢Q, at x.

In the above expressions (1)-(6), the thermodynamical forces a:Q — Sym’, F:Q - R
and H:Q — R" arc dcfined for the mixture. Here, Sym’ denotes the set of symmetric linear
operators from R* to R,
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2.2. The First and Second Laws of Thermodynamics
The First Law of Thermodynamics for this kind of continuum can be written as:

%J;(e+§pil'i|)=ﬁ [(an)'l’l+(H'n)B——q'n]+J(b'l'H-['ﬂ) Yo < Q. (M

w

where ¢:Q — R is the volumetric internal energy., p:Q — R is the density of the material
and q:Q — R’ is the heat flux. We must warn of the fact that the kinetic energy associated
with B was net considered here.

The associated local form of the First Law is given by :

é=0"Va+F+H -Vf—-divq YxeQ. (8)
Similar forms of the First Law also arise in the microstructure theories of Mindlin

(1964). Toupin (1964) or Goodman and Cowin (1972).
The Second Law of Thermodynamics is expressed by the inequality :

d1ss J 10 voeca 9)
—|s2—-]| —— VocQ
dl oy e 0 @ (

where 5:Q — R is the volumetric entropy and (1: Q — R is the absolute temperature. The
local version of the Sccond Law is given by :

().s"+divq—g-V()20 VreQ. (10)
The substitution of div q, computed from (8), in the above incquality leads to:
a-s‘+F/?+H-V[?+().s'--é—3'V()20 VxeQ, (1)

where the equality o+ Vi = g+ £ comes from the symmetry of o.
[f we write the inequality (11) in terms of the Helmholtz specific free energy W = ¢ — Os,
we obtain the Clausius-Duhem inequality given by :

zl=a-é+F/3+H-V[3—‘P—s()—g0'V()20 ¥xeQ. (12)

In the present study we shall consider only isothermul processes so that the above
version of the Second Law reduces to:

d=a é+Fi+H-Vi-¥ >0 vxeQ. (13)

The local version (12), (13) of the Second Law of Thermodynamics defines the rate of
dissipation « and makes a distinction between possible processes (¢ = 0) and impossible
processes (d < 0).

2.3. The constitutive equation for the stress ¢

Based on the assumption that the material under consideration is a mixture of two
phases, its behavior is supposed to comprise a combination of the mechanical properties of
both constituents. Let us first study the constitutive laws for each phase present in the
material.
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2.3.1. The E-phase. The E-phase is simply an isotropic elastic material. Under the
hypothesis of isothermal and small deformations. the local state of an elastic material is
supposed to be only a function of the strain . The free energy potential W is supposed to
have the following form:

Wele) = - (tre)’ +ptr(s), (14)

where 4 and y are the Lamé constants. or by the complementary free energy potential

;C

. A s ,
Wi(op) = sup oy e~ W) = - (tr o)+ uC tr(od). (15)
where
.c ‘ c |
A= - e o=, 16
20344+ 20) ‘ 4u (16)
From (14) and (15). the following equivalent constitutive relations are postulated :
('*.\p[_ .
o = % = A(tr e}l 4+ 2ue, (7
ce
REUN i .
e= | =s(re) | + 210 0y (18)
doy

2.3.2. The M-phase. The M-phasc is basically an clastic material which cannot achieve
positive values for the stress gy, As we are considering o constraint on gy, it is casier o
design the constitutive behavior for this phase from the complementiry potential approach,
when we have simply

"

. A . . “
Ya = 5 (lrﬂ'm)"*'ll( tr{ay) +/1 (o). (19)

where [ (a) is the indicator function of the convex set of stress tensors with nonpositive
cigenvalues a4, i = 1,2, 3, of the stress tensor oy such that:

0 irdM GZ.
I = . (20)
+ % otherwise,
where T is the following convex set:
L={oyeSym' gy <0.i=123} 2n
From (19) we obtain the constitutive relation expressed by
elay) €WG(oy) = A (tray)l +2p gy + 01 (ay). (22

where &1 (ay) is the subdifferential [see e.g. Ekeland and Teman (1976)] of the function
I (6y). at ay. given by:

¢l (oy) = theSym' h-(t—ay) </ (1) =1 (6y) VreSym'}. (23)

The term [ (o) is associated with the idca that a stress state with positive eigenvalues
would imply an infinite value for the complementary encrgy W§;. which cannot be attained.
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Let us analyse eqn (22) as a unidimensional model : if 6y, is negative. the set ¢/ _(oy) reduces
to zero and the constitutive relation is the same as for the linear elasticity. For gy = 0, the
strain £ can achieve any non-negative value, since the set ¢/ _ (0) contains all these elements.
The positive strain associated with a null stress represents the measure of the gap between
the surfaces of the crack opened due to the positive strain. Equation (22) is not defined for
positive values of gy, since then the set ¢/_(sy) is void, so that the material cannot
attain positive stresses. For the three-dimensional case. some care must be taken in the
corresponding analysis, since some positive values of the strain are not associated with the
separation between the surfaces of the cracks. but rather they are due to the Poisson’s effect.

Since the functional W is convex. we can assume that it is the dual of a convex lower
semi-continuous free energy potential ¥y, and hence:

Wy (e) = sup {UM e— Wy h

T\

.C
sup {“M ‘E— A_(“'“M):*'IJC tr{of)—1_ (UM)}

. 2
lc 2 C 2
= sup aM'a—7(traM)'——u tr(own) - 24)

From the development presented in the Appendix, the masonry material is shown to
be isotropic and therefore the Transfer Theorem (A4) cnables the representation of (24)
in terms of the cigenvalues & of & and gy, of oy since their cigenvectors are collincar:

~('
p) . . ,
Wy (e) = sup {aM - (tray) —ptr (agd)}
aysL =
= sup w,(oy). (25)
ay X
where
-(. .
W, (On) = 0y &) +0OmE2+ 0y 8 — 5 (om, +om, +04,)" —u* (om, +ou, +oy,). (26)

The computation of (25) presents distinct features depending on the strain £ considered.
Let us analyse each one of these situations:

(a) Let us suppose initially that the strain ¢ is such that the supremum of (25) can be
computed without the activation of any of the constraints from Z. In this instance, the
required supremum is also the stationary point a3¢ of the functional w,, obtained from the
condition:

({(:’3;; w(ol) =0, i=1.23, 27
which gives:
&g = (o +onp +oi ) +2ua, i=1,2.3, (28)
or the inverse relation :
on (&) = Ae, +ea+e3) +2pe, i=1,2.3. (29)

The substitution of (29) into (26) gives directly the free energy Wy (¢)
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Wy (e) = ;(tr ) +utr(s) (30)

provided that the strain is such that af;" <0,i= 1,273 or, from (29). that:

/+2 (6, +&). (i.j.k)eP (31

where P = {(1.2.3). (2.3.1). (3. 1,2)} is the set of cyclic permutations of the subscripts I,
2 and 3. The inequalities (31) define the set:

Ey, = {seSym";si < - (g, + &), (i.j.k)eP}. (32)

/+"

where (30) holds.
From (30). we obtain the following stress—strain relations:

Wy .
¢ = o = A(tre)l +2ue Vee E,. 33
o M

Since the strains belonging to £, must verifly the inequalitics (31), we conclude from
(33) that the associated stresses oy are such that their eigenvalues are all non-positive.

(b) Now we consider the situations where once of the constraints, say oy, < 0, is activated
during the scarch for the supremum of w,. In this case, the supremum is located on the
boundary a,, = 0, where we can write w, simply as:

n('
A s s .
w, (‘,M)HMA—() = O, b+ O 6, — 5 (‘7M,+"'.~|,)' —H (“ﬁl,'*'”ﬁt,)- (34)

The stationary point a3} of (34) is given by:

a':,'q =4 (e, +e)+ 206, qg=1i], (35)
where
;.c 2/1# l

L= - e = , — = 36
| 4“(:().(__*_#(.) )'+2” l‘tl 4 l“ ( )

and therefore the supremum of (34) is given by :

;- 1 b b]

Wa(e) = 5" (6 +5) "+ (& +7) (37)

for any strain satisfying the inequalitics (rh (e) >0 and o'“ (8) €0, ¢y=1ij.(i.j.k)eP.
These constraints define the sct:

i iy
L) = Sym'ie, > — = (648, £ € — s £y
L, {ze ym ;& A+2“(r +¢&,), & < P
Ay .
£ S ST g, (L j . K)ePr, (38)
-ty

where the relations (29) and (35) were taken into account,

SAS 29:24-%
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Since the free energy (37) is an isotropic function of &, we can write the stress-strain
relations as:

cWyle) . ..
om = = A (e;+¢&)+2ue, €0, g=1i/,
MU G, e e (i, j k) eP.
c¥y(e)
Om, = e 0, (39)

(c) Let the strain ¢ be such that two of the constraints, say om, < 0 and gy, < 0. are active
in the computation of (25). In this instance, the supremum of w, belongs to the manifold
characterized by the equalities o, = 0 and gy, = 0, where w, behaves as:

wc(dM)am/-aM‘ =0 = GM,ai - %(;'C + Z”C)o’lsi,' (40)

The stationary point of the above expression is characterized by :

. l u(3A+2u)
Sy — = . 41
oM, = 3¢ 2" At p i @0
and thus the substitution of (41) in (40) gives the free encrgy functional :
P u(3i+2)
(o) = ) MO (42)

2 i+p
for any strain belonging to the set:

A

el 2‘(*;-:;“5 £y & > — 2(11;1—) &iy (I.j,k)EP}. (43)

E, = {eeSym" 06, <0, &>

(d) Finally, we have to consider the situation where all the constraints of £ are active in
(25). In this case, the supremum is located at the point oy = 0 and we have simply

Yu(e) =0, VeekE,, (44)
where

Ey = {eeSym*;¢; > 0,i=1,2,3}. 45)

The corresponding stress is clearly null.
In conclusion, we have the free energy potential W\ (g) given by :

A R \ .

i(tr g) +utr(e”), if ee E,,
Au

WYu(e) =9 i+2u

L u(3A+2y) .
i“-—;'—;r"ﬂl, if EEE:.

0, lf EEEj.

(ei+e) +uEl+¢), if ecE), (46)

-

and the stress—strain relations can be written as:
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ou(e) =Aitr z!+2;m ' Vee E,.
om, () = +, —5-(E+e)+2ue, g=ij. ou(e) =0 VeekE,
3442
Om (e)—#( ‘ 4 &, om(e) =0, om(e)=0 VeeE,.
- Aty !
on(e) =0 Vee E,. 47

2.3.3. The two-phase material. Based on the assumption that the ceramic material is a
mixture of the E-phase and the M-phase., we define the following free energy potential for
this new material :

¥(e. B. V) = B¥e(e) + (1 — ) Yu(e) +x(B. V). (43)

where f describes the volume fraction of the E-phase and ¢ (. V8) is a functional associated
to the state law for the parameters f§ and Vg, as will be made clear in the next paragraph.
We recall that in (48) the strain variables of the two materials are supposed to assume the
same values in both phases, at each material point.

From (48), we can write the stress—strain relation for the mixture as:

6‘!’(? vH)
_(%L_ﬂ_ = flo(e)+ (1 —Poy(a). (49)
The stresses 6y, and 6y can be described by the relations (17) and (47), and we can

therefore specialize the above expression for the strain e belonging to cach of the sets E,,
i=0,1,2,3:

o=Atrel+2ue Vee E,,
g, = /}}+(I—ﬂ) ](r+r)+li)rk+7;u,,. q=1j
VaeE.,

o, = BlA(e) +e2+25) +2ue]

[ 3442
0, = | BG+2)+(1 - /f)f‘—(—i“—"—’] b B+ )

L VBEE;,
o, = BlA(e, +er+e3)+2ue,]. q=j.k
o = fi(Atrel +2pue) Vee E,. (50)

2.4. Degradation of the material : the phase transformation as a dissipative process

The state variable f§ describes the proportions of the two phases in the ceramic material.
The degradation of the material under high tensile loading can be thought of as a phase
transformation, from the E-phase to the M-phase, which is governed by the balance law
(5). In our study, the dependence of the thermodynamical forces F and H—appearing in
(5)—upon the state variables ff and Vf is established by considering, for instance, that the
free encrgy W of the material is given by :

., Kk
Ve f.VA) = f¥e(e)+ (1 - H)¥u(e) + (1 - f) +1(B) + g/"+ 5 VB VB (51

where g, = and k are positive material constants, highlighting the fact that we must have
a < =. The indicator function /() of the set {0, 1] is defined as:
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0, if Befo.1].

+ > otherwisc.

Ip) = { (52)

As will be illustrated in the example in Section 3. the material constant = describes the
stored energy density level that must be reached in a virgin material in order to start the
phase transformation process. The indicator function /() prevents the volume fraction
of the elastic phase from attaining values outside the interval [0, 1]. The term (a/2)8° is
included in order to regularize the evolution of f§ along the process and finally the term
(k/2)VB-Vf is considered so as to give to f§ a diffusive behavior. thus smoothing the field 8
on Q.

From (51). we define the following constitutive relations called the state laws:

v
o= 7 = fac(e)+ (| —May(e). (53)
v
FRredyW = Wi(e) —Wn(e) —z+afi + (). (55)

where F® denotes the reversible part of the thermodynamic force /- detined in (2) and 21(f3)
is the subdifferential of the indicator function /, at f.

To complete the constitutive equations, additional information about the dissipative
nature of the phase transformation must be given. These informations can be obtained
from the pscudo potential of dissipation ® written as:

o =i (). (56)

where i is the indicator function of the set (= «,0]. Since our model describes a simple
material, the rate ff describes, in a certain sense, the recent history of the function f8. Thus,
the time derivative considered here is a left derivative. In this study, we assume that fis a
sectionally continuous function of the time, hence leading to a continuous history for the
state variable fi.

The irreversible part F' of the force Fis related to ff by the constitutive relation, called
the complementary law

F'" = F—FRedd(f) — di (f). (57)

The irreversibility constraint ff < 0 is taken into account in the theory by the potential
® and the complementary law (57). since it would be necessary to have infinite encrgy in
order to have a negative f.

3. ANALYSIS OF THE PHASE TRANSFORMATION MODEL

The state laws (53)-(55) and the complementary law (57) form a complete set of
constitutive equations that model the behavior of ceramic-like materials.

The substitution of (54), (55) and (57) in (5) gives the following balance equation that
governs the evolution of the volume fraction f§ of the clastic constituent

WYe(e)—Wye)—z+aff+h+h _+kAB+1 =0, (58)
where he dI(f) and h_edi_(f}).

Let us analyse the behavior of § as it obeys the balance law given by the expression
(58). For the sake of simplicity, we shall consider the evolution of a bar of length L and
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constant cross-section submitted to imposed displacements at its ends. Furthermore, we
shall suppose that the external thermodynamical force / is equal to zero.

Obviously. the field § will depend on the choice of the initial and boundary conditions.
If we have g(x = 0.¢) = g(x = L. 1) = 0. then. from eqns (6) and (54), it results that:

i—[}(.t=0.l)=§[~3(.v=L.t)=0. (59)
Cx cx

where x is the longitudinal coordinate. The following initial conditions associated with a
virgin. unstrained material will be adopted :

Bu=0)=1, fr=0)=0, ¢(tr=0)=0. (60)

The initial conditions above satisfy the balance equation (58). Indeed. under the above
conditions, since W¢(0) = ¥\ (0) = 0 and the material constants are such that —z+a is
negative, then there are many pairs of positive clements 4 from ¢1(1) and of positive elements
h_ from ¢i _(0) such that:

—z+a+h+h_ =0 (61)
thus satisfying the balance equation (58).

Under the hypothesis of a umaxial state of stress, the governing equation (58) can be
reduced to:

]
W) -Vyle)—z+aff+h+h +k :f\!’ =0, (62)
where, from (7) and (46):
L (3442 ,
W= H ; -'Hrt‘ll_) el = LEel, (63)
and
0, if ¢, >0,
W — s ) 4
Fu 1fel,  otherwise. (64)

From (62)-(64), we conclude that the phase parameter f cannot vary under com-
pressive loads since then the difference Wi —'Py is equal to zero, leading to the same
situation expressed in (61) for the unstrained state.

If we consider the imposed displacements

u(x=00=0, u(lLty=a, a>0, Vi=0, (65)
where «, is the component of the displucement vector u in the axial direction, then eqn

(62)—together with the initial and boundary conditions (60) and (61)—will admit only
one homogencous solution fi(x, 1) = fi,;(r) such that:

(i) Wc have fi,, = | up to the instant:
L [:-a)
t=1"= - \/—(_——Q. (66)

Indecd, the phase transformation parameter ff;; can never increase its value since
otherwise the rate fli; would be positive, the set di_ (fy) would be void and the
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expression (62) would become meaningless. This behavior characterizes the irre-
versible nature of the present phase transformation. On the other hand, the parameter
Bu cannot decrease its value (leading to a phase transformation) whenever we have:
Yele)~z+a<0 (67)
because if we have decided that By is negative, there would be a left neighborhood
}7_ at the instant ¢, where for any t,+ At, Ar < 0, belonging to V' _ the parameter
would have assumed values greater than one, which could not have happened (or
otherwise the set ¢/(f) would be void). Thus, whenever we have (67), the rate B, must
be nuil. This means that the material does not degrade in such a situation.
After the time instant ¢ = ¢*, the term W (e) — -+ a becomes positive and the balance
equation becomes:

Wele)—z+afy+h+h_ =0, (68)
which can be satisfied only if f; decreases so as to satisfy:
WYele)~z+afy =0, h=0 and h_ =0 (69)
This 1s verificd for:
z—¥.(g)
P = “““";lji* 0 <t, /}n <0. 70)

It we consider the constitutive law given by (63) and the load history given by (65),
we can rewrite the evolution (70) of fy, as:

1 ary L [2z
). = L. 1 o . L] €1< L2 P —,
P u[ '[(L>] rsist 1\/5

The phase parameter reaches zero at time #** defined above, characterizing a totally
broken material.

As the imposed displacement continues to increase, the term Wi(e) — - becomes
positive, and the balance equation reduces to:

(7

Wele)—z+h+h_ =0, (72)

which is clearly satisfied due to the existence of a negative element 2€d/(0) and a
non-negative clement i_ € i (fy).

Figure 3 shows the uniaxial stress-strain curve for this tensile test. The material

constants = and ¢ can be obtained experimentally by comparing the uniaxial strains £* and
£2¥ with the analytical values

Stress
L

History of loading

Strain
f
Togd

L
-l

14
Strain

Fig. 3. Stress—strain curve for the tensile test.
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- 2:
g2 = |2 E"). e:;=\/; (73)

If we consider the following imposed displacement :

at until ¢ =1, with * <, < **,

ul(L.t) = { (74)

a(2t,—t) for t2=1,,

we have the uniaxial stress—strain curve shown in Fig. 1.

4. A THERMODYNAMICALLY CONSISTENT MODEL

A consistent constitutive theory must not admit processes where the dissipation rate
d [see eqn (12)] is negative.

Proposition 4.1. The constitutive model defined by the potentials W (e, B, V) in (51) and
®(B) in (56) is consistent with the Second Law of Thermodynamics expressed by (13).

Proof. The rate of variation of the potential W is given by :

oW

4
V(e f. V) = ‘& it g VI (P @~ 4o

+ lim

Ar-0

1B+ An) = I(f(0)
[essn-teo]

where At is negative since the rate W is a left derivative; the limit is to be computed at the
instant ¢ with the information which is available,
The subdifferential /(1)) is such that:
B+ AD)—=I(B(D) = h(B(e+AD—B(1)) YhedI((1)). (76)

The division of (76) by At < 0 gives:

(B +AnD) = 1(B(1)) Bt+AnN—p(r)
v <h o VhedI(B(1)). (77)

The limit of the incquality (77) as At < 0 approaches the value zero leads to:

lim 1B +AIA))' =1(B(1)) <hf

(78)

and then we have:
V(e f.VB) <o-é+H-VE+F*f Vhedl(p(1), (79)

where the constitutive relations (53)—(55) were taken into account. The intrinsic dissipation
d then verifies

d=cé+(FR+F)f+H-VB-¥ > F"p. (80)

On the other hand, from the definition of di_ (ff) we have:
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Gl ()= (F"eR:ii (f—i (B = F"(B*—p) VYB*eR). (81)
In particular, for f* = 0, every element £ from ¢ _(f) is such that:
F'g>i (H=0 vi<O. (82)

Hence. from (f) and (h) we conclude that the dissipation is always non-negative and
the present modet is consistent with the Second Law of Thermodynamics.

5. CONCLUSIONS

We proposed a mechanical model which presents the main features of a ceramic
material, in the sense that it shows a brittle behavior under tensile loading, while verifying
an unlimited strength under compressive efforts. The material was supposed to be a mixture
of an elastic phase and a masonry phase, the rupture being associated with a phase
change from the former to the latter one. The model was shown to be consistent with the
Thermodynamics of Irreversible Processes.
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APPENDIX: ISOTROPY OF MASONRY MATERIALS

The isotropy property of the constitutive faw (14) is useful for computing the energy function Yy (2): as in
such cases the expression (16) can be rewritten in terms of the cigenvalues of & and o, the imposition of the
constraints on the stresses becomus casier to perform.

Let ¥ oexpress the collection of all subsets of R. Let us denote the set of all lincar operators on a vector space
into itsell’ by Lin. Let Ort < Lin be the sct of all orthogonal lincar operators and let X be the collection of all
subsets of Lin,

First. we require an extension of the classical definition of isotropy to the case where the function is set
valued.
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Dennition A 1. A multivalued function F: Lin — Y is isotropic if
FIQAQ") = FIA) VAeLin. vQeOrt. (Al)
A multivalued function G: Lin — X is said to be isotropic if
QG(A)QT = GIQAQT) VAelin, vQeOrt, (A2)

where

QG(A)Q" = |f = QgQT:geG(A). (A3)

Proposition AL, The indicator function I _(ay,) is isotropic.

Proof. The function under consideration is isotropic if
[_(Qo,Q") =1_(ay) YQeOrt (Ad)

but (Ad) is trivial since the effective domain of /_ (a4 is determined by the condition oy, €0,/ =1.2,3 and both
ay and Qa, Q" have the same eigenvalues.

Proposition A2, The function Ol (o) is isotropic,

Proof. From the definition (A1), the function &7 _ () is isotropic if

M (QaQTy = QT (a)QF VaeSym' VQeOrt (AS)
but
A (QaQ%) = leSym' - (: -QaQ") €/ (8) -1 _(QaQ)VieSym'}
= {feSym" - Q(r—-mQ" <7 .(QeQ") —7_(QoQ")VreSym'}, (A6)

where © = QeQ'. As [ (a) is an isotropic function, we have I (QtQ") = 7 (z) YreSym', vQeOrt. Thus, it
tollows that

M (QaQty = feSym* Q'IQ  (r~a) S T (£) -1 (a)VreSym'}. (A7)
Let us define g~ Q'Q. We can now rewrite the above expression as
M (QaQ'y = 1QuQ T eSym' g (v —a) <[ ()= (a)YreSym'}
= 1QeQ'eSym'; g dl (o))
= Q! (@)Q' (A8)
and hence the assertion is true.
Proposition A3, The strain function e(a) given by (14) is isotropic.

Proof. By considering the result (A3), the expression (14) can be developed as follows

2(r Qe QI +21°QayQ + &1 (QayQF)
e ew)QQ"+ 21°Qay QT+ Q M _(6,)QF
Qe(a,)Q". (A9

2(Qay Q")

Now we extend the Transter Theorem [ef. Gurtin (1981)] to the case of multivalued functions.

Proposition A4, Let G:T = X, ' < Sym, be isotropic. Then every eigenvector of A€ is an eigenvector of
G(A).

Proof. Let e be an cigenvector of A€ T, and let Qe Ort be the reflection across the plane perpendicular to e:
Qe=—¢e, Qf=f if fre=0. (A10)

Then by the spectral theorem, Q leaves invariant the characteristic spaces of A. Hence we may conclude from the
commutation theorem that:

QAQ" = A, (ALD)
Thus, since G is isotropic,

QG(AIQ" = G(IQAQT) = G(A) (A12)

or
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QG(A) = GINQ (AL3)
which means that:
Qg =¢Q Ye=GiA). (Al4d)
Theretore.
Qpe = gQe = —ge VgeGlA). (Al3)

Since ge is transtormed by Q exactly in the same manner as e. we conclude that these vectors are parallel to each
other for any g belonging to GeA):

ge =12 2R VgeG(A\) (Al6)

and henee e is an cigenvector of uny ge GA).



